Respuesta :

Displacement (between time 0 and time 25) is the area under the velocity time curve, i.e. ∫ vdt.
Here, v(0)=10, v(25)=34 (approx.)
Therefore 
displacement = (1/2)(10+34 m/s)*(25-0) s   [ trapezoid area ]
=550 m

Answer: 562.5 m

[tex]Displacement = velocity \times time[/tex]= area under the curve in velocity-time graph

The area of the quadrilateral formed by the graph is given by:

[tex]A=\frac{(a+b)}{2} h[/tex]

where, a and b are two parallel sides of the quadrilateral, h is the perpendicular distance between the two parallel sides.

from the given graph,

[tex]a=10 m/s[/tex]

[tex]b=35 m/s[/tex]

[tex]h=25 s[/tex]

Hence, [tex]A= \frac{(10+35) m/s}{2}\times 25 s=562.5 m[/tex]

The area under graph = 562.5 m. Hence, the total displacement is 562.5 m.


Q&A Education