At the candy store, Sophie filled a bag with 2 2/3 kilograms of candy. 1/4 of the weight of the candy was from chocolate covered pretzels. How much did the chocolate covered pretzels in Sophie’s bag weigh?

Respuesta :

The answer is:  " kg" ; or, write as:  " 0.6667 kg " .
__________________________________________
Explanation:
__________________________________________
   Basically, we can reduce the question to:
__________________________________________
          What is " ¼" of "2 ⅔ kg"  ?
_______________________________
              
→  (¼ * 2 ⅔)  kg ;  simplify the amount in "parentheses" ; & keep the units of "kg" (kilograms) ; 
______________________________________________
Write " 2 ⅔ " as an "improper fraction" ;  

→  To do so, multiply the "3" in the "denominator" (from the fraction, " ⅔ ") ; 
  by the "2" (from the whole number).   

      →  3 * 2 = 6 .
_________________________________________

→ Then, take this value; in our case, "6" ;  and the number "2" (from the "2" in the "numerator" (from the fraction portion, " ⅔ ").

      → 6 + 2 = 8 .  
__________________________________________
→ Then, take this value, and write is as the "numerator" over a "new fraction" ; this "new fraction" is the:  "improper fraction" . The "denominator" of this "new fraction" (i.e. "improper fraction") ; is the number from the "denominator" of the fraction portion of our [originally written "mixed number" ; which in our case is:  "3" (from the fraction portion, " ⅔ ") .
___________________________________________
→  So, our mixed number, " 2 ⅔ " , can be written in the "improper fraction form" ; which is:  " ⁸/₃ " .
___________________________________________
→  Put simply:  " 2 ⅔  = [ (3*2) + 2 ] / 3 = (6 + 2) / 3 = 8/3 ; or, " ⁸/₃.
___________________________________________
→ We have:   "(¼ * 2 ⅔)  kg " .

→ Replace the:  " 2 ⅔ " value with:  " ⁸/₃ " ;  to more easily simplify the expression in "parentheses" ; & to more easily solve the problem ; 
__________________________________________________
 →  "(¼ * 2 ⅔) =   [tex] \frac{1}{4} [/tex]*[tex] \frac{8}{3} [/tex] " ;
                         
                         =    ?  ;
___________________________________________________
→ We have:  " [tex] \frac{1}{4} [/tex]*[tex] \frac{8}{3} [/tex]  " ;

                  → The "4" can be 'canceled out' to a "1" ;
         and the "8" can be 'canceled out', and changed to a "2" ;
                             
                           →  since:  "(8÷4=2)" ; and since: "(4÷4=1)" .
___________________________________________________
So now; we have:  " [tex] \frac{1}{1} [/tex] * [tex] \frac{2}{3} [/tex] " ;
___________________________________________________
  →  The " [tex] \frac{1}{1} [/tex] " can be eliminated; 

    → since:  "(1÷1=1)" ;
    → {Note that any value, divided by "1", is equal that same value ;
& that "any non-zero value", divided by "that same value", is equal to "1" .
______________________________________________________
 → As such:  " [tex] \frac{1}{1} [/tex] "  =  {1÷1} = 1 ;
  & this value, which is "1",  multiplied by [the other expression], will be equal to that other expression;
since:
______________________________________________________
→ [the other expression, which is a non-zero value] , multiplied by "1", is equal to [the SAME other expression, which is a non-zero value].
______________________________________________________
→ As such, we can completely eliminate the:  " [tex] \frac{1}{1} [/tex] " ;

   and we are left with:  " ⅔ " .  The units are "kg" .

So; the answer is:  " ⅔ kg" ;  

Note:  " ⅔ " = 2÷3 = 0.666666666666667 ; 
____________________________________________
So; the answer is:  " ⅔ kg" ; or, write as:  0.6667 kg .
____________________________________________
Q&A Education