Respuesta :

The electrical is dominant.
In the hydrogen atom, the electrical force is vastly stronger than the gravitational. It is roughly 39 orders of magnitude greater, i.e. ratio of the electrical to gravitational force is on the order of 10^39.

Answer:

Electrical Force by a factor of [tex]2.23 \times 10^{39}[/tex]

Explanation:

Known values

magnitude of the charge of an electron |e| = [tex]1.6 \times 10^{-19}[/tex]

magnitude of the charge of a proton |e| = [tex]1.6 \times 10^{-19}[/tex]

Note: magnitude means we only consider positive numerical value

mass of an electron m = [tex]9.1  \times 10^{-31}[/tex] kg

mass of an electron M = [tex]1.7 \times 10^{-27}[/tex] kg

[tex]Electric force,F_e = \frac{ke^{2}}{r^{2}}[/tex]

[tex]Gravitational force,F_g = \frac{GMm}{r^{2} }[/tex]

[tex]\frac{Electric force }{Gravitational force}  = \frac{\frac{ke^{2}}{r^{2}}}{ \frac{GMm}{r^{2} }} \\\\\frac{Electric force }{Gravitational force}  = \frac{ke^2}{GMm} \\\\\frac{Electric force }{Gravitational force}  = \frac{9 \times 10^9 \times (1.6 \times 10^{-19})^2}{6.67 \times 10^{-11} \times 1.7 \times 10^{-27} \times 9.1 \times 10^{-31}} \\\\\frac{Electric force }{Gravitational force}  = 2.23 \times 10^{39}[/tex]

Q&A Education