Respuesta :

The short cut formula for finding equation of two points

(x₁, y₁) and (x₂, y₂)

is:        

(y - y₁) / (y₂- y₁) =  (x - x₁) / (x₂ - x₁).      

Substituting:   x₁ = -3, y₁ = 2, x₂ = 7, y₂ = -1

(y - 2) / (-1 - 2) =  (x -  -3) / (7 -  -3)

(y - 2) / -3 =  (x  + 3) / (7 + 3)

(y - 2) / -3 =  (x  + 3) / 10

10*(y - 2) = -3*(x +3)
 
10y - 10*2 = -3*x - 3*3

10y - 20 = -3x - 9

10y + 3x = -9 +20

10y +3x =11

Hence equation is:       10y + 3x = 11

Hope this explains it.

Answer:

[tex]slope = \frac{-1-2}{7+3}[/tex]

Step-by-step explanation:

the slope of a line containing the points (–3, 2) and (7, –1)

To find slope of a line we use formula

[tex]slope = \frac{y_2-y_1}{x_2-x_1}[/tex]

(–3, 2) is (x1,y1) and (7, –1) is (x2,y2)

x1= -3, x2=7, y1=2, y2=-1

Plug in all the values in the formula

[tex]slope = \frac{-1-2}{7+3}=\frac{-3}{10}[/tex]

Q&A Education