Respuesta :
The short cut formula for finding equation of two points
(x₁, y₁) and (x₂, y₂)
is:
(y - y₁) / (y₂- y₁) = (x - x₁) / (x₂ - x₁).
Substituting: x₁ = -3, y₁ = 2, x₂ = 7, y₂ = -1
(y - 2) / (-1 - 2) = (x - -3) / (7 - -3)
(y - 2) / -3 = (x + 3) / (7 + 3)
(y - 2) / -3 = (x + 3) / 10
10*(y - 2) = -3*(x +3)
10y - 10*2 = -3*x - 3*3
10y - 20 = -3x - 9
10y + 3x = -9 +20
10y +3x =11
Hence equation is: 10y + 3x = 11
Hope this explains it.
(x₁, y₁) and (x₂, y₂)
is:
(y - y₁) / (y₂- y₁) = (x - x₁) / (x₂ - x₁).
Substituting: x₁ = -3, y₁ = 2, x₂ = 7, y₂ = -1
(y - 2) / (-1 - 2) = (x - -3) / (7 - -3)
(y - 2) / -3 = (x + 3) / (7 + 3)
(y - 2) / -3 = (x + 3) / 10
10*(y - 2) = -3*(x +3)
10y - 10*2 = -3*x - 3*3
10y - 20 = -3x - 9
10y + 3x = -9 +20
10y +3x =11
Hence equation is: 10y + 3x = 11
Hope this explains it.
Answer:
[tex]slope = \frac{-1-2}{7+3}[/tex]
Step-by-step explanation:
the slope of a line containing the points (–3, 2) and (7, –1)
To find slope of a line we use formula
[tex]slope = \frac{y_2-y_1}{x_2-x_1}[/tex]
(–3, 2) is (x1,y1) and (7, –1) is (x2,y2)
x1= -3, x2=7, y1=2, y2=-1
Plug in all the values in the formula
[tex]slope = \frac{-1-2}{7+3}=\frac{-3}{10}[/tex]