Respuesta :

Answer:

28

Step-by-step explanation:

We need to find the value of [tex]\Sigma_{x=0}^3\ 2x^2[/tex]

We know that,

[tex]\Sigma n^2=\dfrac{n(n+1)(2n+1)}{6}[/tex]

Here, n = 3

So,

[tex]\Sigma n^2=\dfrac{3(3+1)(2(3)+1)}{6}\\\\\Sigma n^2=14[/tex]

So,

[tex]\Sigma_{x=0}^3\ 2x^2=2\times 14\\\\=28[/tex]

So, the value of [tex]\Sigma_{x=0}^3\ 2x^2[/tex] is 28. Hence, the correct option is (d).

Q&A Education