Respuesta :

toporc
The number of permutations of 12 different items taken 5 at a time is:
[tex]12P5=\frac{12!}{7!}=95,040[/tex]
So the correct answer is B. 95,040

Answer:

Option B is correct.

Step-by-step explanation:

We have been given an expression:

[tex]^{12}P_5[/tex]

Above expression is of permutation we have a formula to solve the permutation which is:

[tex]^n{P}_r=\frac{n!}{(n-r)!}[/tex]

Here, n=12 and r=5

On substituting the values in the formula we get:

[tex]^12{P}_5=\frac{12!}{(12-5)!}[/tex]     (1)

And also: [tex]n!=n(n-1)(n-2)....1[/tex]

Equation 1 becomes after first step of simplification:

[tex]\frac{12!]{7!}[/tex]

[tex]\frac{12\cdot11\cdot10\cdot9\cdot8\cdot7!}{7!}[/tex]

Common term from  numerator and denominator which is 7! will get cancelled we get:

[tex]12\cdot11\cdot10\cdot9\cdot8[/tex]

After simplification we get:

95040

Therefore, Option B is correct


Q&A Education