Respuesta :

Answer:1

1. [tex]x = 30[/tex]

2. ∠ABC = 120°, ∠BCD = 90°, ∠CDA = 60°, ∠DAB = 90°

Step-by-step explanation:

It's important to note here that the measure of all interior angles in a quadrilateral will add up to 360°

We know this using the formula[tex](n-2)\cdot 180[/tex], a 4 sided figures angles will add up to

[tex](4-2)\cdot 180\\\\2\cdot 180\\\\360[/tex]

This means that all of the angles (4x, 3x, 2x, 3x) will add up to 360.

[tex]4x + 3x + 2x + 3x = 360[/tex]

Combine like terms:

[tex]12x = 360[/tex]

Divide both sides by 12:

[tex]x = 30[/tex]

We know now substitute x for 30 in for all of the side lengths.

∠ABC = 4x = [tex]4\cdot 30 = 120[/tex]°

∠BCD = 3x = [tex]3\cdot 30 = 90[/tex]°

∠CDA = 2x = [tex]2\cdot 30 = 60[/tex]°

∠DAB = 3x = [tex]3\cdot 30 = 90[/tex]°

Hope this helped!

Step-by-step explanation:

ANSWER:-

  • We know that sum of all angles of a Quadrilateral is 360°.
  • Using this we will find the value of x.

We are given:-

  • ABC = 4x
  • BCD = 3x
  • CDA = 2x
  • DAB = 3x

Now, all angles if summed up will equal 360°.

[tex]4x + 3x + 2x + 3x = {360}^ \circ[/tex]

[tex] {12x}^{ \circ} = {360}^{ \circ} [/tex]

[tex] \boxed{x = {30}^{ \circ} }[/tex]

Now, we will find the Respective angles:-

ABC = 4x = 120°

BCD = 3x = 90°

CDA = 2x = 60°

DAB = 3x = 90°.

Q&A Education