Respuesta :

Answer:  tan(14x)

Step-by-step explanation:

Consider the Sum Formula for tan:

[tex]tan(A + B)=\dfrac{tan(A)+tan(B)}{1-tan(A)(tan(B)}\\\\\\tan(9x+5x)=\dfrac{tan(9x)+tan(5x)}{1-tan(9x)(tan(5x)}\\\\\\\large\boxed{tan(14x)}=\dfrac{tan(9x)+tan(5x)}{1-tan(9x)(tan(5x)}[/tex]

Answer:

[tex]\tan(4x)[/tex]

Step-by-Step Explanation:

Notice that this resembles the difference identity for tangent. Specifically:

[tex]\displaystyle \tan(\alpha-\beta)=\frac{\tan(\alpha)-\tan(\beta)}{1+\tan(\alpha)\tan(\beta)}[/tex]

So, given our equation, we can pretend that α=9x and β=5x. Therefore:

[tex]\displaystyle \frac{\tan(9x)-\tan(5x)}{1+\tan(9x)\tan(5x)}=\tan(9x-5x)=\tan(4x)[/tex]

Q&A Education