Suppose a simple random sample of size nequals64 is obtained from a population with mu equals 88 and sigma equals 8. ​(a) Describe the sampling distribution of x overbar. ​(b) What is Upper P (x overbar greater than 89.7 )​? ​(c) What is Upper P (x overbar less than or equals 85.7 )​? ​(d) What is Upper P (87.35 less than x overbar less than 90.5 )​?

Respuesta :

Answer:

a) [tex] \bar X \sim N (\mu, \frac{\sigma}{\sqrt{n}})[/tex]

With:

[tex]\mu_{\bar X}= 88[/tex]

[tex]\sigma_{\bar X}= 8[/tex]

b) [tex]z=\frac{89.7-88}{\frac{8}{\sqrt{64}}}= 1.7[/tex]

[tex]P(Z>1.7) = 1-P(Z<1.7) =1-0.955=0.0446[/tex]

c) [tex]z =\frac{85.7-88}{\frac{8}{\sqrt{64}}}= -2.3[/tex]

[tex]P(Z<-2.3) = 0.0107[/tex]

d) [tex]z =\frac{87.35-88}{\frac{8}{\sqrt{64}}}= -0.65[/tex]

[tex]z =\frac{90.5-88}{\frac{8}{\sqrt{64}}}= 2.5[/tex]

[tex]P(-0.65<z<2.5)=P(Z<2.5)-P(Z<-0.65) =0.994-0.258 = 0.736[/tex]

Step-by-step explanation:

For this case we know the following propoertis for the random variable X

[tex]\mu = 88, \sigma = 8[/tex]

We select a sample size of n = 64

Part a

Since the sample size is large enough we can use the central limit distribution and the distribution for the sample mean on this case would be:

[tex] \bar X \sim N (\mu, \frac{\sigma}{\sqrt{n}})[/tex]

With:

[tex]\mu_{\bar X}= 88[/tex]

[tex]\sigma_{\bar X}= 8[/tex]

Part b

We want this probability:

[tex]P(\bar X>89.7)[/tex]

We can use the z score formula given by:

[tex]z = \frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

And if we find the z score for 89.7 we got:

[tex]z=\frac{89.7-88}{\frac{8}{\sqrt{64}}}= 1.7[/tex]

[tex]P(Z>1.7) = 1-P(Z<1.7) =1-0.955=0.0446[/tex]

Part c

[tex]P(\bar X<85.7)[/tex]

We can use the z score formula given by:

[tex]z = \frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

And if we find the z score for 85.7 we got:

[tex]z =\frac{85.7-88}{\frac{8}{\sqrt{64}}}= -2.3[/tex]

[tex]P(Z<-2.3) = 0.0107[/tex]

Part d

We want this probability:

[tex]P(87.35 <\bar X< 90.5)[/tex]

We find the z scores:

[tex]z =\frac{87.35-88}{\frac{8}{\sqrt{64}}}= -0.65[/tex]

[tex]z =\frac{90.5-88}{\frac{8}{\sqrt{64}}}= 2.5[/tex]

[tex]P(-0.65<z<2.5)=P(Z<2.5)-P(Z<-0.65) =0.994-0.258 = 0.736[/tex]

Q&A Education