Respuesta :

n^4 - 11 n² + 30 = ( n² - 6 ) ( n² - 5 )
n^4 - 7 n² + 10 = ( n² - 2 ) ( n² - 5 )
( n² - 6 ) ( n² - 5 ) / ( n² - 2 ) ( n² - 5 )= [tex] \frac{ n^{2} -6}{n ^{2} -2} [/tex]

Answer:

[tex]\frac{n^{2}-5}{n^{2}-2}[/tex]

Step-by-step explanation:

The rational expression is [tex]\frac{n^{4}-11n^{2}+30}{n^{4}-7n^{2}+10}[/tex]

Now we will simplify numerator first

[tex]n^{4}-11n^{2}+30[/tex]

=[tex]n^{4}-11n^{2}+30=n^{4}-6n^{2}-5n^{2}+30[/tex]

[tex]=n^{2}(n^{2}-6)-5(n^{2}-6)=(n^{2}-5)(n^{2}-6)[/tex]

Now we will simplify the denominator

[tex]n^{4}-7n^{2}+10=n^{4}-5n^{2}-2n^{2}+10[/tex]

[tex]=n^{2}(n^{2}-5)-2(n^{2}-5)=(n^{2}-2)(n^{2}-5)[/tex]

Now the fraction becomes

[tex]\frac{(n^{2}-5)(n^{2}-6)}{(n^{2}-2)(n^{2}-6)}=\frac{n^{2}-5}{n^{2}-2}[/tex]

So the answer is [tex]\frac{n^{2}-5}{n^{2}-2}[/tex]

Q&A Education