Respuesta :
Answer:
a) [tex]P(X>20 |X>15) =\frac{P(X>20)}{P(X>15)} =\frac{0.305}{0.742}=0.411[/tex]
b) [tex]P(X>25 |X>18) =\frac{P(X>25)}{P(X>18)} =\frac{0.048}{0.481}=0.0997[/tex]
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean". Â
Let X the random variable that represent the interpupillary distance (the distance between the pupils of the left and right eyes) of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(17.8,4.3)[/tex] Â
Where [tex]\mu=17.8[/tex] and [tex]\sigma=4.3[/tex]
And let [tex]\bar X[/tex] represent the sample mean, the distribution for the sample mean is given by:
[tex]\bar X \sim N(\mu,\frac{\sigma}{\sqrt{n}})[/tex]
On this case  [tex]\bar X \sim N(72,\frac{6}{\sqrt{27}})[/tex]
Part a
(a) What is the probability that the waiting time will exceed 20 minutes, given that it has exceeded 15 minutes?
[tex]P(X>20 |X>15) =\frac{P(X>20 and X>15)}{P(X>15)}=\frac{P(X>20)}{P(X>15)}=\frac{1-P(X<20)}{1-P(X<15)}[/tex]
We can find the inidivual probabilities like this:
[tex]P(X>15)=1-P(X<15) = 1-P(Z<\frac{15-17.8}{4.3})=1-P(Z<-0.65)=1-0.258=0.742[/tex]
[tex]P(X>20)=1-P(X<20) = 1-P(Z<\frac{20-17.8}{4.3})=1-P(Z<0.511)=1-0.695=0.305[/tex]
And then we can replace
[tex]P(X>20 |X>15) =\frac{P(X>20)}{P(X>15)} =\frac{0.305}{0.742}=0.411[/tex]
Part b
(b) What is the probability that the waiting time will exceed 25 minutes, given that it has exceeded 18 minutes?
[tex]P(X>25 |X>18) =\frac{P(X>25 and X>18)}{P(X>18)}=\frac{P(X>25)}{P(X>18)}=\frac{1-P(X<25)}{1-P(X<18)}[/tex]
We can find the inidivual probabilities like this:
[tex]P(X>18)=1-P(X<18) = 1-P(Z<\frac{18-17.8}{4.3})=1-P(Z<0.0465)=1-0.519=0.481[/tex]
[tex]P(X>25)=1-P(X<25) = 1-P(Z<\frac{25-17.8}{4.3})=1-P(Z<1.67)=1-0.952=0.048[/tex]
And then we can replace
[tex]P(X>25 |X>18) =\frac{P(X>25)}{P(X>18)} =\frac{0.048}{0.481}=0.0997[/tex]