A right rectangular prism's edge lengths are 4 1 2 inches, 4 inches, and 3 inches. How many unit cubes with edge lengths of 1 3 inch can fit inside the prism?

Respuesta :

Question:

A right rectangular prism's edge lengths are  [tex]4\frac{1}{2}[/tex] inches, 4 inches, and 3 inches. How many unit cubes with edge lengths of [tex]\frac{1}{3}[/tex] inch can fit inside the prism?

Answer:

1458 cubes with edge lengths of  [tex]\frac{1}{3}[/tex] inch can fit inside the prism.

Step-by-step explanation:

Given:

Dimensions of the rectangular prism = [tex]4\frac{1}{2}[/tex] inches, 4 inches, and 3 inches

length of  Edge of the cube = [tex]\frac{1}{3}[/tex]

To Find:

Number of unit cubes that can fit inside the prism =?

Solution:

Step 1: Finding the volume of the right rectangular prism

Volume of the right Rectangular prism is = [tex]w\times h\times l[/tex]

where

w = width of theright Rectangular prism

h = height of the right Rectangular prism

l = lenght of the right Rectangular prism

Substituting the values ,

Volume of the right Rectangular prism is = [tex]4\frac{1}{2}\times4\times 3[/tex]

Volume of the right Rectangular prism is = [tex]\frac{9}{2}\times4\times 3[/tex]

Volume of the right Rectangular prism is = [tex] 4.5\times4\times 3[/tex]

Volume of the right Rectangular prism is = 54 [tex]inch^3[/tex]

Step 2: Finding the volume of the cube

Volume of the cube = [tex](edge)^3[/tex]

Substituting the  values,

Volume of the cube = [tex]( \frac{1}{3})^3[/tex]

Volume of the cube = [tex]( \frac{1}{27})[/tex]

Step 3: Find the number of cube that can fit in the cube.

Number of  cubes = [tex]\frac{\text{volume of the right Rectangular prism}}{\text{Volume of the cube}}[/tex]

Number of  cubes = [tex]\frac{54}{\frac{1}{27}}[/tex]

Number of  cubes = [tex]54\times27[/tex]

Number of  cubes  =  1458 cubes

Q&A Education