Respuesta :

Answer:

[tex]tan(B)=\frac{8}{6}[/tex]

Step-by-step explanation:

see the attached figure to better understand the problem

we know that

In the right triangle ABC of the figure

1) The tangent of angle B is equal to divide the opposite side angle B to the adjacent side to angle B

so

[tex]tan(B)=\frac{AC}{BC}[/tex]

substitute the given values

[tex]tan(B)=\frac{8}{6}[/tex]

2) The sine of angle B is equal to divide the opposite side angle B to the hypotenuse

[tex]sin(B)=\frac{AC}{AB}[/tex]

substitute the given values

[tex]sin(B)=\frac{8}{10}[/tex]

3) The cosine of angle B is equal to divide the adjacent side angle B to the hypotenuse

[tex]cos(B)=\frac{BC}{AB}[/tex]

substitute the given values

[tex]cos(B)=\frac{6}{10}[/tex]

therefore

The answer is

[tex]tan(B)=\frac{8}{6}[/tex]

Ver imagen calculista
Q&A Education