A bowling ball of mass 5.8 kg moves in a straight line at 4.34 m/s How fast must a Ping-Pong ball of mass 2.214 g move in a straight line so that the two balls have the same momentum?
Answer in units of m/s.

Respuesta :

Answer: 11369.46 m/s

Explanation:

We have the following data:

[tex]m_{1}=5.8 kg[/tex] is the mass of the bowling ball

[tex]V_{1}=4.34 m/s[/tex] is the velocity of the bowling ball

[tex]m_{2}=2.214 g \frac{1 kg}{1000 g}=0.002214 kg[/tex] is the mass of the ping-pong ball

[tex]V_{2}[/tex] is the velocity of the ping-pong ball

Now, the momentum [tex]p_{1}[/tex] of the bowling ball is:

[tex]p_{1}=m_{1}V_{1}[/tex] (1)

[tex]p_{1}=(5.8 kg)(4.34 m/s)[/tex]  

[tex]p_{1}=25.172 kg m/s[/tex] (2)

And the momentum [tex]p_{2}[/tex] of the ping-pong ball is:

[tex]p_{2}=m_{2}V_{2}[/tex] (3)

If the momentum of the bowling ball is equal to the momentum of the ping-pong ball:

[tex]p_{1}=p_{2}[/tex] (4)

[tex]m_{1}V_{1}=m_{2}V_{2}[/tex] (5)

Isolating [tex]V_{2}[/tex]:

[tex]V_{2}=\frac{m_{1}V_{1}}{m_{2}}[/tex] (6)

[tex]V_{2}=\frac{25.172 kg m/s}{0.002214 kg}[/tex] (7)

Finally:

[tex]V_{2}=11369.46 m/s[/tex]

Q&A Education