Respuesta :

Answer:

The given expression  [tex](\frac{5}{6} a^{9}p^{5})  ^{3} = \frac{125}{216}  \times a^{(27) } \times p^{(15)}[/tex]

Step-by-step explanation:

Here, the given expression is:  [tex](\frac{5}{6} a^{9}p^{5})  ^{3}[/tex]

Now, starting from the outer most bracket.

As we know :

[tex](abc)^{n}   = (a)^{n} \times (b)^{n}  \times (c)^{n}[/tex]

and [tex](a^m)^{n} = a^{(m \times n)}[/tex]

[tex](\frac{5}{6} a^{9}p^{5})  ^{3} = (\frac{5}{6})^{3} \times (a^{9})^{3}   \times (p^{5}) ^{3}\\[/tex]

[tex]=\frac{125}{216}  \times (a)^{(9\times3) } \times (p)^{(5 \times 3)}\\= \frac{125}{216}  \times a^{(27) } \times p^{(15)}[/tex]

Hence, the given expression  [tex](\frac{5}{6} a^{9}p^{5})  ^{3} = \frac{125}{216}  \times a^{(27) } \times p^{(15)}[/tex]

Answer:

The algebraic expression result is [tex](\frac{125}{216})a^{27}p^{15}[/tex]

Step-by-step explanation:

The given algebraic expression is :

[tex](\frac{5}{6}a^{9}p^{5})^{3}[/tex]

Or, [tex](\frac{5}{6})^{3}(a^{9})^{3}(p^{5})^{3}[/tex]

Or, [tex](\frac{125}{216})a^{27}p^{15}[/tex]

Hence the algebraic expression result is [tex](\frac{125}{216})a^{27}p^{15}[/tex] Answer

Q&A Education