Respuesta :
First step would be using this logarithm rule [tex]\ln\left(\dfrac ab\right) = \ln(a) - \ln(b)[/tex] on right side.
Hope this helps.
Hope this helps.
Answer:
[tex]ln(x - 1) = ln(\frac{6}{x})[/tex]
Step-by-step explanation:
[tex]ln(x - 1) = ln6 - lnx[/tex]
To solve for x we need to simplify the ln
To simplify logarithmic function we use log property
[tex]ln(a) - ln(b) = ln(\frac{a}{b})[/tex]
we apply the same property on the right hand side of the given equation
[tex]ln(x - 1) = ln6 - lnx[/tex]
[tex]ln(6) - ln(x) = ln(\frac{6}{x})[/tex]
[tex]ln(x - 1) = ln(\frac{6}{x})[/tex]
This is the first step in solving the given equation