The width of a rectangle is 7 meters greater than its length. If the area of the rectangle is 170 square meters, write the quadratic equation in standard form for the equation that would represent the area of the rectangle. Let x equal the length of the rectangle.
Since x represents the length (in meters), the width, which is 7 meters greater, is x +7. The product of these dimensions is the area (in square meters):  x(x +7) = 170 In standard form, the quadratic is ...  x² +7x -170 = 0