Respuesta :
Hey
[tex]5 log(x) + 3 log( {x}^{2} ) [/tex]
[tex] = log( {x}^{5} ) + log( {x}^{6} ) [/tex]
[tex] = log( {x}^{5} \times {x }^{6} ) [/tex]
[tex] = 11 log(x) [/tex]
[tex]5 log(x) + 3 log( {x}^{2} ) [/tex]
[tex] = log( {x}^{5} ) + log( {x}^{6} ) [/tex]
[tex] = log( {x}^{5} \times {x }^{6} ) [/tex]
[tex] = 11 log(x) [/tex]
Answer:
[tex]5 log x + 3 log x^{2} = 11 log x[/tex]
Step-by-step explanation:
Given the logarithmic expression
[tex]5 logx + 3 log x^2[/tex]
Logarithm rule: when we take log with any number raise to power x
Then the power x move down before the log and write log with the base of number
For example : Let we take a number [tex]2^x[/tex]
When we take log then power x go down and write before the log and take log with the given base of that number
Therefore we can write as x log 2
Now , we have logarithmic expression
[tex]5logx + 3 log x^2[/tex]
= [tex]5 logx + 6 log x[/tex]
= [tex]11 logx[/tex]