Respuesta :
Hello!
We use the amount in grams (mass ratio) based on the composition of the elements, see: (in 100g solution)
C: 70.79% = 70,79 g
H: 8.91% = 8.91 g
N: 4.59% = 4.59 g
O: 15.72% = 15.72 g
Let us use the above mentioned data (in g) and values will be converted to amount of substance (number of moles) by dividing by molecular mass (g / mol) each of the values, lets see:
[tex]C: \dfrac{70.79\:\diagup\!\!\!\!\!g}{12\:\diagup\!\!\!\!\!g/mol} \approx 5.89\:mol[/tex]
[tex]H: \dfrac{8.91\:\diagup\!\!\!\!\!g}{1\:\diagup\!\!\!\!\!g/mol} = 8.91\:mol[/tex]
[tex]N: \dfrac{4.59\:\diagup\!\!\!\!\!g}{14\:\diagup\!\!\!\!\!g/mol} \approx 0.328\:mol[/tex]
[tex]O: \dfrac{15.72\:\diagup\!\!\!\!\!g}{16\:\diagup\!\!\!\!\!g/mol} = 0.9825\:mol[/tex]
We note that the values found above are not integers, so let's divide these values by the smallest of them, so that the proportion is not changed, let's see:
[tex]C: \dfrac{5.89}{0.328}\to\:\:\boxed{C\approx 18}[/tex]
[tex]H: \dfrac{8.91}{0.328}\to\:\:\boxed{H\approx 27}[/tex]
[tex]N: \dfrac{0.328}{0.328}\to\:\:\boxed{N\approx 1}[/tex]
[tex]O: \dfrac{0.9825}{0.328}\to\:\:\boxed{O\approx 3}[/tex]
Thus, the minimum or empirical formula found for the compound will be:
[tex]\boxed{\boxed{C_{18}H_{27}N_1O_3\:\:or\:\:C_{18}H_{27}NO_3}}\end{array}}\qquad\checkmark[/tex]
I hope this helps. =)
We use the amount in grams (mass ratio) based on the composition of the elements, see: (in 100g solution)
C: 70.79% = 70,79 g
H: 8.91% = 8.91 g
N: 4.59% = 4.59 g
O: 15.72% = 15.72 g
Let us use the above mentioned data (in g) and values will be converted to amount of substance (number of moles) by dividing by molecular mass (g / mol) each of the values, lets see:
[tex]C: \dfrac{70.79\:\diagup\!\!\!\!\!g}{12\:\diagup\!\!\!\!\!g/mol} \approx 5.89\:mol[/tex]
[tex]H: \dfrac{8.91\:\diagup\!\!\!\!\!g}{1\:\diagup\!\!\!\!\!g/mol} = 8.91\:mol[/tex]
[tex]N: \dfrac{4.59\:\diagup\!\!\!\!\!g}{14\:\diagup\!\!\!\!\!g/mol} \approx 0.328\:mol[/tex]
[tex]O: \dfrac{15.72\:\diagup\!\!\!\!\!g}{16\:\diagup\!\!\!\!\!g/mol} = 0.9825\:mol[/tex]
We note that the values found above are not integers, so let's divide these values by the smallest of them, so that the proportion is not changed, let's see:
[tex]C: \dfrac{5.89}{0.328}\to\:\:\boxed{C\approx 18}[/tex]
[tex]H: \dfrac{8.91}{0.328}\to\:\:\boxed{H\approx 27}[/tex]
[tex]N: \dfrac{0.328}{0.328}\to\:\:\boxed{N\approx 1}[/tex]
[tex]O: \dfrac{0.9825}{0.328}\to\:\:\boxed{O\approx 3}[/tex]
Thus, the minimum or empirical formula found for the compound will be:
[tex]\boxed{\boxed{C_{18}H_{27}N_1O_3\:\:or\:\:C_{18}H_{27}NO_3}}\end{array}}\qquad\checkmark[/tex]
I hope this helps. =)
The empirical formula of the compound is C₁₈H₂₇NO₃
From the question given above, the following data were obtained:
Carbon (C) = 70.79%
Hydrogen (H) = 8.91%
Nitrogen (N) = 4.59%
Oxygen (O) = 15.72%
Empirical formula =?
The empirical formula of the compound can be obtained as follow:
C = 70.79%
H = 8.91%
N = 4.59%
O = 15.72%
Divide by their molar mass
C = 70.79 / 12 = 5.899
H = 8.91 / 1 = 8.91
N = 4.59 / 14 = 0.328
O = 15.72 / 16 = 0.9825
Divide by the smallest
C = 5.899 / 0.328 = 18
H = 8.91 / 0.328 = 27
N = 0.328 / 0.328 = 1
O = 0.9825 / 0.328 = 3
Therefore, the empirical formula of the compound is C₁₈H₂₇NO₃
Learn more: https://brainly.com/question/24818135