Respuesta :
The speed of sound in a medium is given by:
[tex]c= \sqrt{ \frac{K_s}{\rho} } [/tex]
where
Ks is the bulk modulus
[tex]\rho[/tex] is the medium density
In our problem, [tex]c=1533 m/s[/tex] and [tex]\rho =1025 \cdot 10^3 kg/m^3[/tex], so if we re-arrange the previous equation we can find the bulk modulus of sea water:
[tex]K_s = \rho c^2 = (1025 kg/m^3)(1533 m/s)^2=2.41 \cdot 10^9 N/m^2[/tex]
[tex]c= \sqrt{ \frac{K_s}{\rho} } [/tex]
where
Ks is the bulk modulus
[tex]\rho[/tex] is the medium density
In our problem, [tex]c=1533 m/s[/tex] and [tex]\rho =1025 \cdot 10^3 kg/m^3[/tex], so if we re-arrange the previous equation we can find the bulk modulus of sea water:
[tex]K_s = \rho c^2 = (1025 kg/m^3)(1533 m/s)^2=2.41 \cdot 10^9 N/m^2[/tex]
Answer:
Bulk modulus, [tex]B=2.40\times 10^9\ N/m^2[/tex]
Explanation:
Given that,
The velocity of sound in sea water, v = 1533 m/s
Density of water, [tex]\rho=1.025\times 10^3\ kg/m^3[/tex]
We need to find the bulk modulus. The speed of sound also depends on the bulk modulus of the material. The relationship is given by :
[tex]v=\sqrt{\dfrac{B}{\rho}}[/tex]
[tex]B=v^2\times \rho[/tex]
[tex]B=(1533\ m/s)^2\times 1.025\times 10^3\ kg/m^3[/tex]
[tex]B=2.40\times 10^9\ N/m^2[/tex]
So, the bulk modulus of the sea water is [tex]2.40\times 10^9\ N/m^2[/tex]. Hence, this is the required solution.