Respuesta :

a - side of a square

r - radius of a circle

[tex] |\Omega|=a^2\\
|A|=4\pi r^2\\
r=\dfrac{a}{4}\\
|A|=4\pi \cdot\left(\dfrac{a}{4}\right)^2=4\pi \cdot\dfrac{a^2}{16}=\dfrac{a^2\pi}{4}\\\\
P(A)=\dfrac{\dfrac{a^2\pi}{4}}{a^2}=\dfrac{\pi}{4}\approx 79\% [/tex]

Hm, looks like none of the asnwers is correct.

Answer:

78.5%

Step-by-step explanation:

Let radius of each circle=r

then, length of square=4r

Then, Area of shaded region=Area of 4 circles=4×πr²

                                    = 4×3.14×r²

                                   = 12.56×r²

Now, total area of figure= area of square

                                        = 4r×4r

                                       = 16×r²

Hence, probability that point will be in shaded region

=  area of shaded region/total area of figure

= 12.56/16

=0.785

≈ 78.5%

Hence, no option is correct

                     

Q&A Education