Respuesta :
[tex]\bf \textit{volume of a sphere}\\\\
V=\cfrac{4\pi r^3}{3}~~
\begin{cases}
r=radius\\
------\\
V=1256\pi
\end{cases}\implies 1256\pi =\cfrac{4\pi r^3}{3}
\\\\\\
1256\pi (3)=4\pi r^3\implies \cfrac{1256\pi (3)}{4\pi }=r^3\implies 942=r^3\implies \sqrt[3]{942}=r[/tex]
Answer:
The radius of the softball is 9.802 inches.
Step-by-step explanation:
Volume of the sphere is given by:
[tex]\frac{4}{3}\pi r^3[/tex]
Volume of the softball = [tex]1256\pi[/tex]
Radius of softball = r
[tex]1256\pi inche^3=\frac{4}{3}\pi r^3[/tex]
r =9.802 inches
The radius of the softball is 9.802 inches.