Respuesta :

[tex]\bf \textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\ ------\\ V=1256\pi \end{cases}\implies 1256\pi =\cfrac{4\pi r^3}{3} \\\\\\ 1256\pi (3)=4\pi r^3\implies \cfrac{1256\pi (3)}{4\pi }=r^3\implies 942=r^3\implies \sqrt[3]{942}=r[/tex]

Answer:

The radius of the softball is 9.802 inches.

Step-by-step explanation:

Volume of the sphere is given by:

[tex]\frac{4}{3}\pi r^3[/tex]

Volume of the softball = [tex]1256\pi[/tex]

Radius of softball = r

[tex]1256\pi inche^3=\frac{4}{3}\pi r^3[/tex]

r =9.802 inches

The radius of the softball is 9.802 inches.

Q&A Education