Respuesta :
[tex]\bf y+5=-\cfrac{3}{4}(x+2)\implies y+5=-\cfrac{3}{4}x\left( -\cfrac{3}{4} \right)2\implies y+5=-\cfrac{3}{4}x-\cfrac{3}{2}
\\\\\\
\cfrac{3}{4}x+y=-\cfrac{3}{2}-5\implies \stackrel{standard~form}{\cfrac{3}{4}x+y=-\cfrac{13}{2}}[/tex]
Answer: 3x + 4y = - 26
Explanation:
1) the standard form is Ax + By = C
2) given: y + 5 = - (3 / 4) (x + 2)
3) multiply both sides by 4:
4y + 20 = - 3 (x + 2)
4) expand the parenthesis using distributive property:
4y + 20 = -3x - 6
5) transpose -3x and 20
4y + 3x = - 20 - 6
6) combine like terms
4y + 3x = - 26
7) rearrange:
3x + 4y = - 26
That is the standard form of the linear equation given.
Explanation:
1) the standard form is Ax + By = C
2) given: y + 5 = - (3 / 4) (x + 2)
3) multiply both sides by 4:
4y + 20 = - 3 (x + 2)
4) expand the parenthesis using distributive property:
4y + 20 = -3x - 6
5) transpose -3x and 20
4y + 3x = - 20 - 6
6) combine like terms
4y + 3x = - 26
7) rearrange:
3x + 4y = - 26
That is the standard form of the linear equation given.