A rigid cylinder with a movable piston contains a 2.0-liter sample of neon gas at STP. What is the volume of this sample when it’s temperature is increased to 30 degrees Celsius while its pressure is decreased to 90 kilopascal

Respuesta :

This problem is being solved using Ideal Gas Equation.
                                                   PV  =  nRT
Data Given:
                  Initial Temperature = T₁ = 0 °C = 273 K
                  Initial Pressure      =  P₁ = 101.325 KPa
                  Initial Volume         = V₁ = 2 L
                   Final Temperature = T₂ = 30 °C = 303 K
                  Final Pressure      =  P₂ = 90 KPa
                  Final Volume         = V₂ = ?
As,
Gas constant R is constant, so, Ideal gas equation can be written as,
                                         P₁ V₁ / T₁  =  P₂ V₂ / T₂
Solving for V₂,
                                           V₂  =  (P₁ × V₁ × T₂) ÷ (T₁ × P₂)
Putting Values,
                              V₂  =  (101.325 KPa × 2 L × 303 K) ÷ (273 K × 90 KPa)

                              V₂  =  61402.95 ÷ 24570

                              V₂  =  2.499 ≈ 2.5 L

Answer : The volume of this sample is, 2.52 L

Solution : Given,

Volume of gas = 2 L

At STP,

Temperature of the gas = 273 K

Pressure of the gas = 1 atm

At temperature [tex]30^oC[/tex], the pressure is 90 kilopascal

Using ideal gas law,

[tex]PV=nRT[/tex]

(n and R is constant for this problem)

Or, [tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]

where,

[tex]P_1[/tex] = initial pressure of gas = 1 atm

[tex]P_2[/tex] = final pressure of gas = [tex]90Kpa=\frac{90}{101.325}=0.88atm[/tex]

(1 atm = 101.325 Kpa)

[tex]V_1[/tex] = initial volume of gas = 2 L

[tex]V_2[/tex] = final volume of gas

[tex]T_1[/tex] = initial temperature of gas = 273 K

[tex]T_2[/tex] = final temperature of gas = [tex]30^oC=273+30=303K[/tex]

[tex](0^oC=273K)[/tex]

Now put all the given values in the above formula, we get the final volume of the sample.

[tex]\frac{(1atm)\times (2L)}{273K}=\frac{(0.88atm)\times V_2}{303K}[/tex]

[tex]V_2=2.52L[/tex]

Therefore, the final volume of the sample is, 2.52 L

Q&A Education