In si units, the electric field in an electromagnetic wave is described by ey = 104 sin(1.40 107x − ωt). (a) find the amplitude of the corresponding magnetic field oscillations. µt (b) find the wavelength λ. µm (c) find the frequency f.

Respuesta :

Answers:
(a) [tex]B_o  = 0.3466[/tex]μT
(b) [tex]\lambda = 0.4488[/tex]μm
(c) f = [tex]6.68 * 10^{14}Hz[/tex]

Explanation:
Given electric field(in y direction) equation:
[tex]E_y = 104sin(1.40 * 10^7 x -\omega t)[/tex]

(a) The amplitude of electric field is [tex]E_o = 104[/tex]. Hence

The amplitude of magnetic field oscillations is [tex]B_o = \frac{E_o}{c} [/tex]
Where c = speed of light

Therefore,
[tex]B_o = \frac{104}{3*10^8} = 0.3466[/tex]μT (Where T is in seconds--signifies the oscillations)

(b) To find the wavelength use:
[tex] \frac{2 \pi }{\lambda} = 1.40 * 10^7[/tex]
[tex]\lambda = \frac{2 \pi}{1.40} * 10^{-7}[/tex]
[tex]\lambda = 0.4488[/tex]μm

(c) Since c = fλ
=> f = c/λ

Now plug-in the values
f = (3*10^8)/(0.4488*10^-6)
f = [tex]6.68 * 10^{14}Hz[/tex]


Q&A Education