Respuesta :
quadratic trinomial can be represent as product
ax² + bx + c =a(x - x1)(x - x2), where x1 and x2 are roots of quadratic equation ax² + bx + c=0,
so to solve this problem we need to find roots of
3y²+29y-10=0
y=(-b+/-√(b²-4ac))/2a
y=(-29+/-√(29²-4*3*(-10)))/(2*3)
y=(-29+/-√(961)/(6)
y=(-29+/-31/(6)
y1=-60/6=-10
y2=2/6=1/3
3(y-1/3)(y+10)=(3y-1)(y+10)
check: (3y-1)(y+10)=3y²-y+30y-10=3y²+29y-10
ax² + bx + c =a(x - x1)(x - x2), where x1 and x2 are roots of quadratic equation ax² + bx + c=0,
so to solve this problem we need to find roots of
3y²+29y-10=0
y=(-b+/-√(b²-4ac))/2a
y=(-29+/-√(29²-4*3*(-10)))/(2*3)
y=(-29+/-√(961)/(6)
y=(-29+/-31/(6)
y1=-60/6=-10
y2=2/6=1/3
3(y-1/3)(y+10)=(3y-1)(y+10)
check: (3y-1)(y+10)=3y²-y+30y-10=3y²+29y-10
Answer:
Factors (3y -1) ( y + 10 ).
Step-by-step explanation:
Given : 3y² + 29y − 10.
To find : Fill (________ − 1)( _________ + 10)
Solution : We have given
3y² + 29y − 10.
On factoring
3y² + 30y - y − 10.
Taking common 3y form first two terms and -1 from last two terms.
3y ( y + 10 ) -1( y + 10 ) .
On grouping
(3y -1) ( y + 10 ).
Therefore, Factors (3y -1) ( y + 10 ).