Respuesta :
Using the distance formula:
d = [tex] \sqrt{(x2-x1)^2 + (y2-y1)^2} [/tex]
d = [tex] \sqrt{(4 - (-5)^2 + (-7 - 2)^2} [/tex]
d = [tex] \sqrt{(9)^2 + (-9)^2} [/tex]
d = [tex] \sqrt{81 + 81} [/tex]
d = [tex] \sqrt{162} [/tex]
d = 12.7
Hope this helps :)
d = [tex] \sqrt{(x2-x1)^2 + (y2-y1)^2} [/tex]
d = [tex] \sqrt{(4 - (-5)^2 + (-7 - 2)^2} [/tex]
d = [tex] \sqrt{(9)^2 + (-9)^2} [/tex]
d = [tex] \sqrt{81 + 81} [/tex]
d = [tex] \sqrt{162} [/tex]
d = 12.7
Hope this helps :)