Answer:
The correct option is B) [tex]\sin\theta\approx0.9511[/tex]; [tex]\tan\theta\approx3.078[/tex].
Step-by-step explanation:
Consider the provided value of trigonometry function.
[tex]\cos \theta = 0.3090[/tex]
Use the identity: [tex]\sin^2\theta+\cos^2\theta=1[/tex]
[tex]\sin^2\theta=1-\cos^2\theta[/tex]
[tex]\sin\theta=\sqrt{1-\cos^2\theta}[/tex]
Now substitute [tex]\cos \theta = 0.3090[/tex]
[tex]\sin\theta=\sqrt{1-(0.3090)^2}[/tex]
[tex]\sin\theta\approx0.9511[/tex]
Hence, the value of [tex]\sin\theta\approx0.9511[/tex].
Now, use the identity [tex]\tan\theta=\frac{\sin\theta}{cos\theta}[/tex]
Substitute the respective values.
[tex]\tan\theta=\frac{0.9511}{0.3090}[/tex]
[tex]\tan\theta\approx3.078[/tex]
Hence, the value of [tex]\tan\theta\approx3.078[/tex].