Respuesta :

The roots of the function is 26

Answer:

Solutions are

[tex]x_{1}=4\\x_{2}=2\\ x_{3}=3[/tex]

Step-by-step explanation:

The given expression is

[tex]f(x)=x^{3}-9x^{2} +26x-24[/tex]

First, we need the divisors of the independent term, which is 24.

24 divisors: 1, 2, 3, 4, 6, 8, 12, 24.

Now, we replace each divisor in the function, and those which gives zero as result, those are gonna be the roots of the equation.

For [tex]x=1[/tex]

[tex]f(1)=(1)^{3}-9(1)^{2} +26(1)-24=1-9+26-24=-6[/tex]

This means [tex]x=1[/tex] is not a solution.

For [tex]x=2[/tex]

[tex]f(2)=(2)^{3}-9(2)^{2} +26(2)-24=8-36+52-24=0[/tex]

So, [tex]x=2[/tex] is the first solution.

For [tex]x=3[/tex]

[tex]f(3)=(3)^{3}-9(3)^{2} +26(3)-24=27-81+78-24=0[/tex]

It's solution.

For [tex]x=4[/tex]

[tex]f(4)=(4)^{3}-9(4)^{2} +26(4)-24=64-144+104-24=0[/tex]

Therefore, all roots are

[tex]x_{1}=4\\x_{2}=2\\ x_{3}=3[/tex]

Q&A Education