Respuesta :
[tex]p= s - \frac{c}{s}[/tex]
[tex]p= \frac{ s^{2} }{s} - \frac{c}{s}[/tex]
[tex]p= \frac{s^2-c}{s} [/tex]
[tex]ps= s^2-c[/tex]
[tex]ps + c = s^2[/tex]
[tex]c =s^2-ps[/tex]
[tex]p= \frac{ s^{2} }{s} - \frac{c}{s}[/tex]
[tex]p= \frac{s^2-c}{s} [/tex]
[tex]ps= s^2-c[/tex]
[tex]ps + c = s^2[/tex]
[tex]c =s^2-ps[/tex]
Answer:
c = s (s-P)
Step-by-step explanation:
To solve the expression for c, we have to do different operations in order to leave c on one side and the rest of the variables on the other.
First we have:
[tex]P= s-\frac{c}{s}[/tex]
The next step would make the minimum common multiple for the denominator: [tex]P= \frac{s}{1} -\frac{c}{s} \\P=\frac{s^{2}-c }{s}[/tex]
Now we're going to cross multiply:
[tex]P=\frac{s^{2}-c }{s}\\Ps=s^{2} -c[/tex]
Now we're going to move the s² to the other side:
[tex]\\Ps-s^{2} =-c[/tex]
We have -c instead of c, so we're going to change the signs of all terms:
[tex]-Ps+s^{2} =c[/tex]
Now we solved for c but we can still make one more step because both terms on the left side have an s.
[tex]-Ps+s^{2} =c\\s(-P+s) = c[/tex]
Thus c = s (s-P)