Respuesta :
Answer:
π
Step-by-step explanation:
General form of the cosine function is:
[tex]y(x)=Acos(\omega x +\phi)[/tex]
Where:
[tex]A= Amplitude\hspace{3} of \hspace{3} the\hspace{3} function\\\omega=Angular\hspace{3} frequency\\\phi=Phase\hspace{3} shift[/tex]
The frequency of the function is given by the following equation:
[tex]f=\frac{\omega}{2 \pi}[/tex]
The period is the reciprocal of the frequency, so:
[tex]T=\frac{1}{f} =\frac{2 \pi}{\omega}[/tex]
From the equation provided, you can see that the angular frequency is 2. Therefore, the periodof the function is:
[tex]T=\frac{2 \pi}{\omega} =\frac{2\pi}{2} =\pi[/tex]
Answer:
[tex]\displaystyle \pi[/tex]
Step-by-step explanation:
[tex]\displaystyle f(x) = Acos(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A|[/tex]
Accourding to the above information, you will have this result:
[tex]\displaystyle \boxed{\pi} = \frac{2}{2}\pi[/tex]
I am joyous to assist you at any time.