Respuesta :

Answer:

Yes, this graph is absolutely right for the function y = [tex]2\sin(2x)-3[/tex].

Step-by-step explanation:

firstly we will calculate amplitude, period, phase shift, and vertical shift.

Use the standard form [tex]a\sin(bx-c)+d[/tex] to calculate the values of amplitude, period, phase shift, vertical shift.

here a = 2

     b = 2

     c = 0

    d = -3

Amplitude = |a|  = 2

period = [tex]\frac{2\pi}{|b|}[/tex]

           = [tex]\frac{2\pi}{2}[/tex] = [tex]\pi[/tex]

phase shift = [tex]\frac{c}{b}[/tex] = 0

and vertical shift = d = -3

so, by using this information, if we plot the graph then the graph obtained will be same as the given graph.

Answer:

Absolutely correct, [tex]y = ^{2sin(2x)-3}[/tex]

Step-by-step explanation:

Calculate the following:

  • amplitude
  • period
  • phase shift
  • vertical shift

1. a = 2

2. b = 2

3. c = 0

4. d = -3

AMPLITUDE (A) = 2

PERIOD WITH EXPLANATION:

  • 2π/b
  1. = 2π/2 = π

VERTICAL SHIFT - d = -3

CONCLUSION:

if we plot the graph,

the graph obtained will be same as the given graph.

Q&A Education