Respuesta :
Solve for z a(t+z)=45z+67
1. Expand
[tex]at+az=45z+67[/tex]
2. Subtract [tex]at[/tex] from both sides
[tex]az=45z+67-at[/tex]
3. Subtract 45z from both sides
[tex]az-45z=67-at[/tex]
4. Factor out the common term z
[tex]z(a-45)=67-at[/tex]
5. Divide both sides by a - 45
[tex]z= \frac{67-at}{ya-45} [/tex]
Answer: [tex]z= \frac{67-at}{a-45} [/tex]
1. Expand
[tex]at+az=45z+67[/tex]
2. Subtract [tex]at[/tex] from both sides
[tex]az=45z+67-at[/tex]
3. Subtract 45z from both sides
[tex]az-45z=67-at[/tex]
4. Factor out the common term z
[tex]z(a-45)=67-at[/tex]
5. Divide both sides by a - 45
[tex]z= \frac{67-at}{ya-45} [/tex]
Answer: [tex]z= \frac{67-at}{a-45} [/tex]
Answer:
The value of the equation for z is [tex]z=\frac{at-67}{45-a}[/tex].
Step-by-step explanation:
Consider the provided equation.
[tex]a(t+z)=45z+67[/tex]
Open the parentheses.
[tex]at+az=45z+67[/tex]
Subtract az from both sides.
[tex]at+az-az=45z-az+67[/tex]
[tex]at=45z-az+67[/tex]
Subtract 67 from both sides.
[tex]at-67=45z-az[/tex]
Take z common from right side.
[tex]at-67=z(45-a)[/tex]
Divide both the sides by 45-a.
[tex]\frac{at-67}{45-a}=\frac{z(45-a)}{45-a}[/tex]
[tex]z=\frac{at-67}{45-a}[/tex]
Hence, the value of the equation for z is [tex]z=\frac{at-67}{45-a}[/tex].