Respuesta :

Solve for z a(t+z)=45z+67
1. Expand
[tex]at+az=45z+67[/tex]

2. Subtract [tex]at[/tex] from both sides
[tex]az=45z+67-at[/tex]

3. Subtract 45z from both sides
[tex]az-45z=67-at[/tex]

4. Factor out the common term z
[tex]z(a-45)=67-at[/tex]

5. Divide both sides by a - 45
[tex]z= \frac{67-at}{ya-45} [/tex]

Answer: 
[tex]z= \frac{67-at}{a-45} [/tex]

Answer:

The value of the equation for z is [tex]z=\frac{at-67}{45-a}[/tex].  

Step-by-step explanation:

Consider the provided equation.

[tex]a(t+z)=45z+67[/tex]

Open the parentheses.

[tex]at+az=45z+67[/tex]

Subtract az from both sides.

[tex]at+az-az=45z-az+67[/tex]

[tex]at=45z-az+67[/tex]

Subtract 67 from both sides.

[tex]at-67=45z-az[/tex]

Take z common from right side.

[tex]at-67=z(45-a)[/tex]

Divide both the sides by 45-a.

[tex]\frac{at-67}{45-a}=\frac{z(45-a)}{45-a}[/tex]

[tex]z=\frac{at-67}{45-a}[/tex]

Hence, the value of the equation for z is [tex]z=\frac{at-67}{45-a}[/tex].  

Q&A Education