Respuesta :
Answer: The volume of the sphere is 47.69 cube inches.
Step-by-step explanation:
Since, the volume of sphere is,
[tex]V=\frac{4}{3}\pi(r)^3[/tex]
Where r is the radius of the sphere.
Here, the diameter of the sphere = 9 inches,
⇒ Radius of the sphere = 9/2 = 4.5 inches,
Hence, the volume of the given sphere is,
[tex]V=\frac{4}{3}\pi(4.5)^3[/tex]
[tex]=\frac{4}{3}\times 3.14 \times 91.125[/tex]
[tex]=\frac{1144.53}{3}[/tex]
[tex]=381.51[/tex] cube inches.
Thus, The volume of the sphere is 47.69 cube inches.
Answer:
The volume of sphere is 381.51 cubic inches.
Step-by-step explanation:
We are given the following information in the question:
Diameter of sphere = 9 inches
Radius of sphere =
[tex]\text{Radius} = \displaystyle\frac{\text{Diameter}}{2} = \frac{9}{2} = 4.5\text{ inches}[/tex]
[tex]\pi = 3.14[/tex]
Volume of sphere =
[tex]\text{Volume} = \displaystyle\frac{4}{3}\pi r^3\\\\\text{where r is the radius of the sphere}[/tex]
Putting the vales, we get,
[tex]\text{Volume of sphere} = \displaystyle\frac{4}{3}\pi (4.5)^3\\\\=\frac{4}{3}\times 3.14\times (4.5)^3 = 381.51\text{ cubic inches}[/tex]
The volume of sphere is 381.51 cubic inches.