What is the volume of this oblique cone? 80π cm³ 160π cm³ 240π cm³ 320π cm³
What is the volume of this right cone?


27π cm³

200π cm³

213π cm³

300π cm³

What is the volume of this oblique cone 80π cm 160π cm 240π cm 320π cm What is the volume of this right cone 27π cm 200π cm 213π cm 300π cm class=
What is the volume of this oblique cone 80π cm 160π cm 240π cm 320π cm What is the volume of this right cone 27π cm 200π cm 213π cm 300π cm class=

Respuesta :

1) 320π cm³

2)300π cm³

i just took the test

Answer:

1. D. [tex]320\pi\text{ cm}^3[/tex].

2. D. [tex]300\pi\text{ cm}^3[/tex].

Step-by-step explanation:

1.

[tex]\text{Volume of an oblique cone}=\frac{1}{3}\pi r^2h[/tex], where,  

r = Radius of the cone,

h = Height of the cone.

Upon substituting our given values we will get,

[tex]\text{Volume of an oblique cone}=\frac{1}{3}\pi r^2h[/tex]

[tex]\text{Volume of an oblique cone}=\frac{1}{3}\pi(8\text{ cm})^2\times 15\text{ cm}[/tex]

[tex]\text{Volume of an oblique cone}=\frac{1}{3}\pi(64\text{ cm}^2)\times 15\text{ cm}[/tex]

[tex]\text{Volume of an oblique cone}=\pi(64\text{ cm}^2)\times 5\text{ cm}[/tex]

[tex]\text{Volume of an oblique cone}=320\pi\text{ cm}^3[/tex]

Therefore, the volume of our given oblique cone is [tex]320\pi\text{ cm}^3[/tex] and option D is the correct choice.

2.

[tex]\text{Volume of right cone}=\frac{1}{3}\pi r^2h[/tex], where,

r = Radius of the cone,

h = Height of the cone.

Upon substituting our given values we will get,

[tex]\text{Volume of right cone}=\frac{1}{3}\pi (10\text{ cm})^2\times 9\text{ cm}[/tex]  

[tex]\text{Volume of right cone}=\frac{1}{3}\pi 100\text{ cm}^2\times 9\text{ cm}[/tex]  

[tex]\text{Volume of right cone}=100\pi\text{ cm}^2\times 3\text{ cm}[/tex]

[tex]\text{Volume of right cone}=300\pi \text{ cm}^3[/tex]

Therefore, the volume of our given right cone is [tex]300\pi \text{ cm}^3[/tex] and option D is the correct choice.

Q&A Education