Answer:
1. D. [tex]320\pi\text{ cm}^3[/tex].
2. D. [tex]300\pi\text{ cm}^3[/tex].
Step-by-step explanation:
1.
[tex]\text{Volume of an oblique cone}=\frac{1}{3}\pi r^2h[/tex], where,
r = Radius of the cone,
h = Height of the cone.
Upon substituting our given values we will get,
[tex]\text{Volume of an oblique cone}=\frac{1}{3}\pi r^2h[/tex]
[tex]\text{Volume of an oblique cone}=\frac{1}{3}\pi(8\text{ cm})^2\times 15\text{ cm}[/tex]
[tex]\text{Volume of an oblique cone}=\frac{1}{3}\pi(64\text{ cm}^2)\times 15\text{ cm}[/tex]
[tex]\text{Volume of an oblique cone}=\pi(64\text{ cm}^2)\times 5\text{ cm}[/tex]
[tex]\text{Volume of an oblique cone}=320\pi\text{ cm}^3[/tex]
Therefore, the volume of our given oblique cone is [tex]320\pi\text{ cm}^3[/tex] and option D is the correct choice.
2.
[tex]\text{Volume of right cone}=\frac{1}{3}\pi r^2h[/tex], where,
r = Radius of the cone,
h = Height of the cone.
Upon substituting our given values we will get,
[tex]\text{Volume of right cone}=\frac{1}{3}\pi (10\text{ cm})^2\times 9\text{ cm}[/tex]
[tex]\text{Volume of right cone}=\frac{1}{3}\pi 100\text{ cm}^2\times 9\text{ cm}[/tex]
[tex]\text{Volume of right cone}=100\pi\text{ cm}^2\times 3\text{ cm}[/tex]
[tex]\text{Volume of right cone}=300\pi \text{ cm}^3[/tex]
Therefore, the volume of our given right cone is [tex]300\pi \text{ cm}^3[/tex] and option D is the correct choice.