They will meet after 26.6667 mins.
Given to us
- Jeremy and Gerardo run at constant speeds.
- Jeremy can run 1 mile in 8 minutes, and Gerardo can 3 miles in 33 minutes.
- Jeremy started running 10 minutes after Gerardo.
- assuming they run the same path.
Speed of Jeremy
[tex]\rm{Speed =\dfrac{Distance}{Time}[/tex]
[tex]\rm{speed = \dfrac{1\ miles}{8\ min}= \dfrac{1}{8}\ mile/min.[/tex]
Speed of Gerardo
[tex]\rm{Speed =\dfrac{Distance}{Time}[/tex]
[tex]\rm{speed = \dfrac{3\ miles}{33\ min}= \dfrac{1}{11}\ mile/min.[/tex]
Assumption
Let assume that it takes t mins for Jeremy to cover the distance between Jeremy and Gerardo.
Time of Jeremy
[tex]\rm{Distance=speed \times Time[/tex]
[tex]{Distance=\dfrac{1}{8}\times t[/tex]
Time of Gerardo
[tex]\rm{Distance=speed \times Time[/tex]
[tex]{Distance=(\dfrac{1}{11}\times t)+(\dfrac{1}{11}\times 10)[/tex]
Equating time,
[tex]\dfrac{1}{8}\times t=(\dfrac{1}{11}\times t)+(\dfrac{1}{11}\times 10)\\\\\dfrac{t}{8} = \dfrac{t}{11}+\dfrac{10}{11}\\\\\dfrac{t}{8}=\dfrac{t+10}{11}\\\\11 \times t = 8 \times (t+10)\\11t = 8t +80\\11t-8t = 80\\3t = 80\\t = \dfrac{80}{3}\\t= 26.6667[/tex]
Hence, they will meet after 26.6667 mins.
Learn more about Speed, distance, and time:
https://brainly.com/question/15100898