Respuesta :
Let x = amount of 65% antifreeze
Let y = amount of 90% antifreeze  Â
EQUATION 1: Â x + y = 50 Â Â (total of 50 gallons mixed)Â Â Â
EQUATION 2: Â .65x + .90y = .70(x + y)Â
Simplify and solve the system of equations  Â
Multiply second equation by 100 on both sides to remove the decimals    Â
 65x + 90y = 70(x + y)  Â
Combine like terms    Â
 65x + 90y = 70x + 70y   Â
   65x -70x+ 90y-70y = 0  Â
     -5x + 20y = 0   Â
Now we have the following system of equations:Â Â Â Â
 x  +   y = 50   Â
 -5x + 20y = 0  Â
 Multiply the first equation by 5 to get opposite coefficients for x; Â
add the equations to eliminate x    Â
  5x + 5y = 250   Â
 -5x + 20y = 0  Â
------------------------------Â Â Â Â Â
     25y = 250  Â
 Solve for y      Â
y = 10Â Â Â Â Â Â Â Â Â
Since the total mixed gallons is 50,
x = 50 - 10 = 40Â
So we need 40 gallons of the 65% antifreeze and 10 gallons of the 90% antifreeze
Let y = amount of 90% antifreeze  Â
EQUATION 1: Â x + y = 50 Â Â (total of 50 gallons mixed)Â Â Â
EQUATION 2: Â .65x + .90y = .70(x + y)Â
Simplify and solve the system of equations  Â
Multiply second equation by 100 on both sides to remove the decimals    Â
 65x + 90y = 70(x + y)  Â
Combine like terms    Â
 65x + 90y = 70x + 70y   Â
   65x -70x+ 90y-70y = 0  Â
     -5x + 20y = 0   Â
Now we have the following system of equations:Â Â Â Â
 x  +   y = 50   Â
 -5x + 20y = 0  Â
 Multiply the first equation by 5 to get opposite coefficients for x; Â
add the equations to eliminate x    Â
  5x + 5y = 250   Â
 -5x + 20y = 0  Â
------------------------------Â Â Â Â Â
     25y = 250  Â
 Solve for y      Â
y = 10Â Â Â Â Â Â Â Â Â
Since the total mixed gallons is 50,
x = 50 - 10 = 40Â
So we need 40 gallons of the 65% antifreeze and 10 gallons of the 90% antifreeze