Respuesta :
Radius of Earth = 6,378 Km
Radius of the Moon = (6,378 Km)(0.273) = 1,741.19 Km or 1,741,190 m
G = 6.67 x 10⁻¹¹ N.m²/Kg²
Mass of the moon = 7.348 x 10²² KG
Formula:Escape Velocity Ve = √2 GM/R
Ve = √2 (6.67 x 10⁻¹¹ N.m²/Kg²)(7.348 x 10²² Kg)/1,741.19 /1,741,190 m
Ve = √5,629,616.53 m²/s²
Ve = 2,372.68 m/s or
Ve = 2.37 Km/s
Radius of the Moon = (6,378 Km)(0.273) = 1,741.19 Km or 1,741,190 m
G = 6.67 x 10⁻¹¹ N.m²/Kg²
Mass of the moon = 7.348 x 10²² KG
Formula:Escape Velocity Ve = √2 GM/R
Ve = √2 (6.67 x 10⁻¹¹ N.m²/Kg²)(7.348 x 10²² Kg)/1,741.19 /1,741,190 m
Ve = √5,629,616.53 m²/s²
Ve = 2,372.68 m/s or
Ve = 2.37 Km/s
The escape velocity of the rocket from the moon is 2.38 km/s.
What is escape velocity?
This is the minimum velocity required by an astronomical body to escape the force of gravity.
To calculate the escape velocity of the rocket, we use the formula below.
Formula:
- Vs = [tex]\sqrt{2gR}[/tex]................... Equation 1
Where:
- Vs = Escape velocity of the rocket leaving the moon
- g = acceleration due to gravity of the moon
- R = Radius of the moon
From the question,
Given:
- g = 9.8(0.166) = 1.6268 m/s²
- R = 0.273(6371) = 1739.283 km = 1739283 m
Substitute the given values into equation 1
- Vs = [tex]\sqrt{2*1.6268*1739283}[/tex]
- Vs = [tex]\sqrt{5658931.1688}[/tex]
- Vs = 2378.85 m/s
- Vs = 2.37885 km/s
- Vs ≈ 2.38 km/s.
Hence, the escape velocity of the rocket from the moon is 2.38 km/s.
Learn more about escape velocity here: https://brainly.com/question/13726115