Respuesta :

The problem can be solved using the Power of a Point, which states that:

[tex]EC \cdot ED=EB \cdot EA[/tex].

Substituting

[tex]EC=x+4; ED=x+5; EB=x+1; EA=x+12,[/tex] 

we have the equation

[tex](x+4) \cdot (x+5)=(x+1) \cdot (x+12)[/tex].

Expanding both sides we get, 

[tex]x^2+9x+20=x^2+13x+12.[/tex]

Subtracting [tex]x^2[/tex] from both sides, we have
                           
[tex]9x+20=13x+12[/tex]. 
 
Collecting x's and the numbers on two different sides, we have:

4x=8, which finally yields x=2.



Answer: x=2
Q&A Education