Find a power series representation for the function and determine the interval of convergence. (give your power series representation centered at x = 0.) f(x)=1/(8+x)

Respuesta :

[tex]f(x)=\dfrac1{8+x}=\dfrac18\dfrac1{1-\left(-\frac x8\right)}[/tex]

Recall that

[tex]\dfrac1{1-x}=\displaystyle\sum_{n\ge0}x^n[/tex]

for [tex]|x|<1[/tex], so we can write [tex]f(x)[/tex] as the series

[tex]f(x)=\displaystyle\frac18\sum_{n\ge0}\left(-\frac x8\right)^n[/tex]
Q&A Education