Let's take the non-linear equation:
[tex] {x}^{2} = \sqrt{3} y[/tex]
First Make The Equation To Be In Terms of Y
*Divide Both sides by
[tex] \sqrt{3} [/tex]
[tex] \frac{ {x}^{2} }{ \sqrt{3} } = \frac{ \sqrt{3} y}{ \sqrt{3} } [/tex]
*Simplify
[tex] \frac{ {x}^{2} }{ \sqrt{3} } = y[/tex]
You shouldn't keep a radical in the denominator, however we leave it for the purpose of the reciprocal.
*Take The Reciprocal Of Both Sides
[tex] \frac{ \sqrt{3} }{ {x}^{2} } = \frac{1}{y} [/tex]
A Linear Equation Takes The Format:
[tex]y = mx + b[/tex]
So,
[tex] \frac{1}{y} = y[/tex]
[tex]b = 0[/tex]
[tex]m(slope) = \frac{ \sqrt{3} }{x} [/tex]
[tex]x = \frac{1}{x} [/tex]
Resulting in :
[tex] \frac{1}{y} = \frac{ \sqrt{3} }{x} (\frac{1}{x} ) + 0[/tex]