Respuesta :

Option D is correct.

The best explanation for the following [tex]\tan \frac{5 \pi}{6}[/tex]≠  [tex]\tan \frac{5 \pi}{6}[/tex] is; The angles do not have the same reference angle or the same sign.

Explanation:

Why: [tex]\tan \frac{5 \pi}{6}[/tex]≠  [tex]\tan \frac{5 \pi}{6}[/tex]

*Every trigonometry function is positive in the first quadrant.  

*In second quadrant only sin is positive and its inverse cosec. Rest all the function are negative.

*In third quadrant gives positive value only for tan and its inverse i.e cot

*In fourth quadrant gives positive value only for cos and its inverse sec.

The value of  [tex]\tan \frac{5 \pi}{6}[/tex] = -0.57735026919

and the value of  [tex]\tan \frac{5 \pi}{6}[/tex] = -1.73205080757.

therefore, the values of [tex]\tan \frac{5 \pi}{6}[/tex]≠  [tex]\tan \frac{5 \pi}{6}[/tex].

Also,

the angle [tex]\frac{5\pi}{6}[/tex] lies in the second quadrant and the angle [tex]\frac{5\pi}{3}[/tex] lies in the fourth quadrant.

Hence, the angles do not have the same reference angle or the same sign.

Ver imagen OrethaWilkison
Ver imagen OrethaWilkison
Q&A Education