Respuesta :

[tex]\bf \stackrel{a}{12}i+\stackrel{b}{4\sqrt{3}}j\implies \ \textless \ 12~,~4\sqrt{3}\ \textgreater \ \qquad \begin{cases} \stackrel{magnitude}{r}=\sqrt{a^2+b^2}\\\\ \theta =tan^{-1}\left( \frac{b}{a} \right) \end{cases}\\\\ -------------------------------\\\\ r=\sqrt{12^2+(4\sqrt{3})^2}\implies r=\sqrt{144+(4^2\sqrt{3^2})}[/tex]

[tex]\bf r=\sqrt{144+(16\cdot 3)}\implies r=\sqrt{144+48}\implies r=\sqrt{192} \\\\\\ r=\sqrt{64\cdot 3}\implies r=\sqrt{8^2\cdot 3}\implies r=8\sqrt{3}\\\\ -------------------------------\\\\ \theta =tan^{-1}\left( \cfrac{4\sqrt{3}}{12} \right)\implies \theta =tan^{-1}\left( \cfrac{\sqrt{3}}{3} \right)\implies \theta = \begin{cases} \frac{\pi }{6}\leftarrow \\\\ \frac{7\pi }{6} \end{cases}[/tex]

notice, those two angles have a valid tangent value, however, notice the "a" and "b" components, their signs are +a and +b, meaning the angle is in the first quadrant, thus, it has to be angle in the first quadrant then.
Q&A Education