ds3724
contestada

In standard position point (2, 3) is on the terminal side of angle θ. Find the values of sine, cosine, and tangent of θ? Please show all work.

Respuesta :

so the point is at (2,3)  namely x = 2, and y = 3, or one could say a = 2 and b = 3,

[tex]\bf (\stackrel{a}{2}~~,~~\stackrel{b}{3})\impliedby \textit{first off, let's find the \underline{hypotenuse}} \\\\\\ \textit{using the pythagorean theorem}\\\\ c^2=a^2+b^2\implies c=\sqrt{a^2+b^2}\qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ c=\sqrt{2^2+3^2}\implies c=\sqrt{4+9}\implies c=\sqrt{13}[/tex]

bearing in mind that, the hypotenuse is just the radius unit in the angle, and therefore is never negative.

[tex]\bf sin(\theta)=\cfrac{opposite}{hypotenuse} \qquad cos(\theta)=\cfrac{adjacent}{hypotenuse} \quad % tangent tan(\theta)=\cfrac{opposite}{adjacent}\\\\ -------------------------------[/tex]

[tex]\bf sin(\theta)=\cfrac{3}{\sqrt{13}}\impliedby \textit{let's rationalize the denominator} \\\\\\ \cfrac{3}{\sqrt{13}}\cdot \cfrac{\sqrt{13}}{\sqrt{13}}\implies \cfrac{3\sqrt{13}}{\sqrt{13^2}} \implies \cfrac{3\sqrt{13}}{13} \\\\\\ cos(\theta)=\cfrac{2}{\sqrt{13}}\impliedby \textit{let's rationalize the denominator again} \\\\\\ \cfrac{2}{\sqrt{13}}\cdot \cfrac{\sqrt{13}}{\sqrt{13}}\implies \cfrac{2\sqrt{13}}{\sqrt{13^2}}\implies \cfrac{2\sqrt{13}}{13} \\\\\\ tan(\theta)=\cfrac{3}{2}[/tex]
Q&A Education