which of the following is an identity?
A. sinx - cosx + 1 = tanx
B. (1 - 2sin^2x)csc^2 x = 4cos2x - 2
C. sin^2xcot^2x + cos^2xtan^2x = 1
D. tan^2x + cot^2x = 1

Respuesta :

Of the given expressions, expression C seems the most likely to be an identity.
To prove it, we should show that
sin²(x) cot²(2x) + cos²(2x) tan²(2x) = 1

Note that
[tex]cot(2x) = \frac{cos(2x)}{sin(2x)} \\ tan(2x) = \frac{sin(2x)}{cos(2x)} \\ cos^{2}(2x)+sin^{2}(2x) = 1[/tex]

Therefore
[tex]sin^{2}(2x) \, cot^{2}(2x)+cos^{2}(2x) \, tan^{2}(2x) \\ =sin^{2}(2x) \frac{cos^{2}(2x)}{sin^{2}(2x)} +cos^{2}(2x) \frac{sin^{2}(2x)}{cos^{2}(2x)} \\ =cos^{2}(2x) + sin^{2}(2x) \\ =1[/tex]
This proves the identity.

Answer: C

Q&A Education