Respuesta :

Answer:

The correct option is B.

Step-by-step explanation:

The given expression is

[tex]\sqrt{144x^{36}}[/tex]

Use the property of radicals.

[tex]\sqrt{ab}=\sqrt{a}\sqrt{b}[/tex]

[tex]\sqrt{144x^{36}}=\sqrt{144}\times \sqrt{x^{36}}[/tex]

Use the property of exponent.

[tex]a^{mn}=(a^m)^n[/tex]

[tex]\sqrt{144x^{36}}=12\times \sqrt{(x^{18})^2}[/tex]

[tex]\sqrt{144x^{36}}=12\times x^{18}[/tex]

[tex]\sqrt{144x^{36}}=12x^{18}[/tex]

Therefore option B is correct.

Answer:

Option (b) is correct.

Expression becomes [tex]=12x^{18}[/tex]

Step-by-step explanation:

Given : square root of [tex]144x^{36}[/tex]

We have to write the given expression in simplified form.

Consider the given expression square root of [tex]144x^{36}[/tex]

Mathematically written as [tex]\sqrt{144x^{36}}[/tex]

[tex]\mathrm{Apply\:radical\:rule\:}\sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b},[/tex]

We have,

[tex]=\sqrt{144}\sqrt{x^{36}}[/tex]

We know [tex]\sqrt{144}=12[/tex]

[tex]=12\sqrt{x^{36}}[/tex]

[tex]\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^m}=a^{\frac{m}{n}},\:\quad \mathrm{\:assuming\:}a\ge 0[/tex]

[tex]\sqrt{x^{36}}=x^{\frac{36}{2}}=x^{18}[/tex]

Thus, Expression becomes [tex]=12x^{18}[/tex]

Q&A Education