Respuesta :

The answer (g(x))=x−7

g(f(x))=x2−7

Explanation:

Put g inside f to find f(g(x))

f(x)=x2−4

g(x)=x−3

f(g(x))=(x−3)2−4

f(g(x))=x−3−4

f(g(x))=x−7

Put f inside g to find g(f(x))

g(x)=x−3

f(x)=x2−4

g(f(x))=x2−4−3

g(f(x))=x2−7:

The answers are f(g(x))=x−7 
and g(f(x))=x2−7

Explanation:

This is a composition of functions.

f(x)=x2−4

g(x)=x−3

fog(x)=f(g(x))=f(x−3)=(x−3)2−4

=x−3−4=x−7

And

gof(x)=g(f(x))=g(x2−4)=(x2−4)−3

=x2−4−3=x2−7

You can see that

f(g(x))g(f(x))


The answer is: X≥6

i just did the assignment

Q&A Education