Respuesta :


Hello!
 
We have the following data:

Time (T) = ? (in minutes)
Power (P) = 3 kW → 3000 W
Energy (E) = 9 MJ → 9000000 J or (W/s)

Formula of the consumption of electric energy:

[tex]P = \frac{E}{T} [/tex]

Solving:

[tex]P = \frac{E}{T} [/tex]

[tex]P = \frac{E}{T} \to T = \frac{E}{P} [/tex]

[tex]T = \frac{9000\diagup\!\!\!\!0\diagup\!\!\!\!0\diagup\!\!\!\!0\:\diagup\!\!\!\!W/s}{3\diagup\!\!\!\!0\diagup\!\!\!\!0\diagup\!\!\!\!0\:\diagup\!\!\!\!W} [/tex]

[tex]\boxed{T = 3000\:seconds}[/tex]

How many minutes can it run for? (Let's convert in minutes)

1 minute --------- 60 seconds
y minute --------- 3000 seconds

[tex] \frac{1}{y} = \frac{60}{3000} [/tex]

Product of extremes equals product of means

[tex]60*y = 1*3000[/tex]

[tex]60y = 3000[/tex]

[tex]y = \frac{3000}{60} [/tex]

[tex]\boxed{\boxed{y = 50\:minutes}}\end{array}}\qquad\quad\checkmark[/tex]


I hope this helps! =)


Answer:

50 minutes

Explanation:

Power, P = 3 kW = 3000 W

Energy, E = 9 MJ = 9 x 10^6 J

Let the time be t.

Power = Energy / time

Time, t = E / P = 9 x 10^6 / 3000 = 3000 sec

t = 50 minutes

Q&A Education