keeping in mind that for a cost C(x) and profit P(x) and revenue R(x), the marginal cost, marginal profit and marginal revenue are respectively dC/dx, dP/dx and dR/dx, then
[tex]\bf P(x)=0.03x^2-3x+3x^{0.8}-4400
\\\\\\
\stackrel{marginal~profit}{\cfrac{dP}{dx}}=0.06x-3+2.4x^{-0.2}
\\\\\\
\cfrac{dP}{dx}=0.06x-3+2.4\cdot \cfrac{1}{x^{0.2}}\implies \cfrac{dP}{dx}=0.06x-3+2.4\cdot \cfrac{1}{x^{\frac{1}{5}}}
\\\\\\
\cfrac{dP}{dx}=0.06x-3+\cfrac{2.4}{\sqrt[5]{x}}[/tex]
[tex]\bf a)\qquad
\cfrac{dP}{dx}=0.06(200)-3+ \cfrac{2.4}{\sqrt[5]{200}}
\\\\\\
b)\qquad \cfrac{dP}{dx}=0.06(2000)-3+\cfrac{2.4}{\sqrt[5]{2000}}
\\\\\\
c)\qquad \cfrac{dP}{dx}=0.06(5000)-3+\cfrac{2.4}{\sqrt[5]{5000}}
\\\\\\
d)\qquad \cfrac{dP}{dx}=0.06(10000)-3+\cfrac{2.4}{\sqrt[5]{10000}}[/tex]