We must reflect over the x-axis and then reflect over the y-axis to map parallelogram ABCD onto parallelogram A'B'C'D'. (Choice A)
In this question we must determine the transformation rules to map parallelogram ABCD onto parallelogram A'B'C'D'.
Let be [tex]A(x, y) = (-4, 1)[/tex], [tex]B(x,y) = (-3,2)[/tex], [tex]C(x,y) = (-1,2)[/tex], [tex]D(x,y) = (-2,1)[/tex], [tex]A'(x,y) = (4, -1)[/tex], [tex]B(x,y) = (3, -2)[/tex], [tex]C'(x,y) = (1, -2)[/tex] and [tex]D'(x,y) = (2, -1)[/tex], we must apply the following transformations:
1) Reflection over the x-axis.
[tex]A''(x,y) = (-4,1) - 2\cdot (0, 1)[/tex]
[tex]A''(x,y) = (-4, -1)[/tex]
[tex]B''(x,y) = (-3, 2) -2\cdot (0, 2)[/tex]
[tex]B''(x,y) = (-3, -4)[/tex]
[tex]C''(x,y) = (-1, 2) -2\cdot (0, 2)[/tex]
[tex]C''(x,y) = (-1,-2)[/tex]
[tex]D''(x,y) = (-2, 1) - 2\cdot (0, 1)[/tex]
[tex]D''(x,y) = (-2, -1)[/tex]
2) Reflection over the y-axis.
[tex]A'(x,y) = (-4,-1) -2\cdot (-4, 0)[/tex]
[tex]A'(x,y) = (4, 1)[/tex]
[tex]B'(x,y) = (-3, -4) -2\cdot (-3, 0)[/tex]
[tex]B'(x,y) = (3, -4)[/tex]
[tex]C'(x,y) = (-1,-2) -2\cdot (-1, 0)[/tex]
[tex]C'(x,y) = (1, -2)[/tex]
[tex]D'(x,y) = ( -2,-1) -2\cdot (-2, 0)[/tex]
[tex]D'(x,y) = (2, -1)[/tex]
In a nutshell, we must reflect over the x-axis and then reflect over the y-axis to map parallelogram ABCD onto parallelogram A'B'C'D'.
We kindly invite to check this question on transformation rules: https://brainly.com/question/17478764